R& D on Thermal Storage in POLYPHEM Project

E. Rojas1, J.M. Caruncho2, A. Bruch3, Q. Falcoz4, M.M. Rodriguez-García1, R. Bayón1, M. Karl5

1CIEMAT-PSA, Spain; 2ARRAELA S.L., Spain, 3CEA-LITEN, France, 4CNRS-PROMES, France; 5FRAUNHOFER ISE, Germany

https://www.polyphem-project.eu

R& D on Thermal Storage in POLYPHEM Project

E. Rojas1, J.M. Caruncho2, A. Bruch3, Q. Falcoz4, M.M. Rodriguez-García1, R. Bayón1, M. Karl5

1CIEMAT-PSA, Spain; 2ARRAELA S.L., Spain, 3CEA-LITEN, France, 4CNRS-PROMES, France; 5FRAUNHOFER ISE, Germany

https://www.polyphem-project.eu

Principle

<table>
<thead>
<tr>
<th>Concentrated Solar Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Brayton cycle</td>
</tr>
<tr>
<td>Thermal Energy Storage</td>
</tr>
<tr>
<td>Organic Rankine cycle</td>
</tr>
<tr>
<td>Power generation « on demand »</td>
</tr>
</tbody>
</table>

TES Objective

Connecting two thermodynamic cycles for:
- Matching the temperature difference between both cycles
- Enhancing flexibility in power generation

STE-TES State of the art
- Two-tank configuration
- Metallic walls
- Molten salt is the storage medium
- Foundations with a insulation layer + natural convection system

POLYPHEM’s approach
- Single-tank
- HTF + filler as storage media
- Concrete walls
- Foundations with only concrete

Studies on fillers
- Natural materials versus Bricks
- Compatibility studies
 - contributing to defining testing procedures
- Thermal ratcheting simulation

Tank Design
- Optimization of tank walls formulation
- Size of tank
- Engineering design
- Required instrumentation of the tank

Foundation Design
- Optimization of foundation formulation
- Engineering design
- Required instrumentation in foundations
- Comparison with current commercial solution (expanded clay)

Modelling and integration
- Preliminary thermohydraulic model
- Simulation of TES integration in the prototype plant
 - control strategies
- Scheme and layout of TES subsystem in prototype plant
- Test matrix and required instrumentation

Lab-test of thermocline
At in-house MicroSol-R (CNRS-PROMES)
- Simulation Models
- Fillers

Expected outcomes
- Cost reduction
 - (28 €/kWh for small-scale STE)
- Larger tank sizes
- Concrete-only foundations

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement N° 764048